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A. S. SAID and R. S. AL-AMEERI

DEPARTMENT OF CHEMICAL ENGINEERING
UNIVERSITY OF KUWAIT, KUWAIT

Abstract

The classical methods of curve fitting using polynomials are not necessarily the
best methods in science and technology. In most cases other functions (the
inverse linear, exponential and logarithmic functions) lead to a better tit of the
original function or data. The best fitting function is the function which has the
same asymmetry as the original function or data around the 45° line with
reference to normalized coordinate axes. In the present paper this technique of
curve fitting is applied to five different fitting functions. An extensive numerical
example is given to illustrate the application of the derived formulas. It can be
extended to more complex fitting functions, to the derivation of accurate
interpolation and extrapolation formulas, and to the numerical solution of
differential and partial differential equations of interest in chemistry, chemical
engineering, separation science, and other branches of science and technology.

INTRODUCTION

In different branches of science and technology there are certain
relationships which cannot be represented by easy analytic expressions,
yet, on plotting these relationships, a simple curve is obtained which can
be approximated quite accurately by a simple function. Examples of such
relationships are the bubble point 7, and dew point ¢, of a binary ideal
liquid mixture and the relation between the relative volatility a of this
mixture with temperature ¢ or composition x, where x is the mole fraction
of the more volatile component in the ideal liquid mixture.

On the other hand, the difterential equation representing a certain
phenomenon might not be of a standard form leading to an analytic
solution, yet, on integrating it numerically and plotting the results, a
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simple curve is obtained which can be easily approximated by a simple
mathematical expression.

The approximating function can be determined from the boundary
conditions of the problem under consideration, particularly from the
slopes at the beginning and end which can be casily determined even for
complicated implicit functions and nonconventional differential equa-
tions. Another useful parameter is the arca under the curve under
consideration which can usually also be obtained from the boundary
conditions. From these and other boundary conditions, the approximat-
ing function is deduced.

THE Y-X COORDINATES

For the purpose of generality we express all functions under considera-
tion in terms of dimensionless parameters Y and X such that Y is the
vertical dimensionless parameter and X is the horizontal dimensionless
parameter. For example, if we desire a relation between vapor pressure P
and temperature ¢ in the temperature range from ¢, to t,, the correspond-
ing dimensionless parameters would be

r—1
y==>-""L and X= 'L
P: - P| an I: - ,1

where P, and P, are the pressures at r, and ¢, respectively. Similarly, for a
relation between relative volatility a and temperature, we define the
dimensionless coordinates as

Tt
a4 — Og y — L

Subscript 0 corresponds to x = ), where x is the mole fraction of the more
volatile component, and subscript 1 corresponds to x = 1, therefore
th>t>r and a, > a > a,

Similarly, if an explicit relation for the bubble point of a binary ideal
liquid mixture is required as a function of mole fraction, we define ¥ and
X by

Iy — 1
y=2_- and X=x
Iy — &
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t, and 1, are the boiling points corresponding to x = (0 and 1, respectively,
hence ¢, is the boiling point of the less volatile component and ¢, is the
boiling point of the more volatile component.

In general, if y = f(x), where y is any dependent variable and x is any
independent variable not necessarily composition, and if it is desired to
approximate this function in the region x; to x,where / and f refer to initial
and final conditions, respectively, and if y; and y; are the corresponding
values of the dependent variable, then

Yr=JYi
X=2=% (2)
Xf_xi

dY _ dY dy dx

dX  dy dx dX

or
ﬂ,=(u>ﬂzedx 3)
dx  \y,—y/ dx dx ’

After developing the relation between Y and X, the original parameters
are substituted to get the relation between P and 1, a and v, etc.
FITTING FUNCTIONS
One can think of a large number of functions where Y varies from 0 to |
as X varies between 0 and I. Only five important functions will be

considered in this paper, namely,

I. The inverse linear function
Y= —— (4

II. The exponential function
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III. The logarithmic function

_In[X(h—1)+1]

Y Inb (6)
IV. The quadratic function
Y=cX+ (1 -o)X* (7
V. The Poisson-type function
Y = Xk'™¥ (8)

where a, g b, ¢, and k are constants.
By differentiation and integration, my, m,, and I were deduced for each
function, where

my = slope at (X = 0) = (dY/dX)y-¢ (9)
m, = slopeat(X = 1) = (dY/dX)y-, (10)
and
1
I = area under the Y vs X curve = f YdX (1)
0

Values of I my m,, and mgn, are given in Table 1 for all five
functions.

As will be shown later, myn, is a measure of the asymmetry of the
function around the 45° line.

It should be noted that each of the above five functions contains one
constant only and has finite slopes at X = 0 and X = 1. Other functions
which have slopes equal to zero or infinity at one or both ends or
functions containing more than one constant will be discussed only
briefly later on. The emphasis in this paper is on the one-constant
equations having finite initial and final slopes of which Egs. (4) to (8) are
important examples.

DETERMINATION OF THE CONSTANTS a, g, b, ¢, AND k

These constants can be evaluated from the coordinates ¥, X of one
point only on the curve and particularly from Y, or X,,, which leads to
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TABLE 1
Function I my my mgm,
Inverse linear w a 1 1
(ILL) (a—1) a
Exponential L ! Ing glne M
(Ex) Ing g-1 g-1 g—1 (g — 1)?
Logarithmi b 1 b—1 b—1 -1
arithmic -
(iog) b-1 Inb Inb binb b(ln b)>
i ¢
Quadratic (Q) E + E c 2-c¢ c(2—2¢)
. k—Ink -1
Poisson (P) -—(l—nl:)z_‘ k 1-Ink k(1 - Ink)

easier relations for the constants and also to a better fit. Y, is the value of
Y at X = % and X, is the value of X at Y = '. For convenience we denote
Y,, by the symbol Z and X, by the symbol Z The constants may be
obtained also from m, or m, or even /. Relations between the constants
and I are rather complex. They are deduced from m,; or m, if the emphasis
is on the first portion or last portion of the curve, respectively, or if the
values of Z and Z are not easy to determine. In general, whenever
possible, the constants are deduced from Z or Z which lie around the
middle portion of the curve. This will, in general, lead to an overall better
accuracy over the entire length of the curve.

The five values obtained from my, m,, I, Z, and Z are identical only if
the fit between the original and approximating function is perfect,
otherwise they differ from one another. If the difference is significant,
then the approximating function is not satisfactory. _

The equations relating the different constants to (¥ and X), Z, Z, m,,
and m, can be deduced either from explicit functions directly or from
implicit functions by trial and error.

In most practical cases, however, Y\, is known or can be determined
easily. The constants g, g ¢ and k for the inverse linear, exponential,
quadratic, and Poisson functions can be expressed easily in terms of
Z =Y,,, leading to
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=2 (12)
_ 2
&= (1 ZZ) (13)
c=4zZ -1 (14)
and
k =47* (15)

Substituting into Egs. (4), (5), (7), and (8) gives the relations between ¥
and X in terms of Z as follows.

Inverse linear:

Y= —Z+Z,ézz— 1) (16)
Exponential:
(1 - Z)ZX 1
Y= —(—IZ;ZT—_—I (17)
z
Quadratic:
Y=(04Z - DX +2(1 -22)X* (18)
Poisson:
Y = X2Z)"'™® (19)

An explicit relation for b in terms of Z is not possible. In this case, b is
calculated by trial and error from Z and its values are substituted in Eq.
(6) to get the fitting logarithmic function. An analytic expression is
possible, however, in terms of X, = Z
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ASYMMETRY OF THE Y vs X FUNCTION

With reference to Fig. 1, 6, and 8, are the two angles between the
tangents to the Y-X curve and the 45° line at X=0 and X =1,
respectively. A curve is symmetrical around the 45° line if 8, = 0,. If
0, # 0,, then the curve is asymetric around the diagonal. When 6, > 8,,
the curve has an asymmetry of the first kind, and when 8, < 6,, the curve
has an asymmetry of the second kind.

Since this paper is devoted to curves which have no maxima or minima
or points of inflection between X =0 and X = 1, then the curves of
interest will lie totally above the diagonal, in which case both 6, and 6,
have positive values, or lie totally below the diagonal, in which case both
0y and 8, have negative values.

8, and 6, are related to m, and m,, respectively, as follows:

my = tan (45 + 6,) (20)
m, = tan (45 — 0,) (21)

Solving for m, and m, gives

_ 1+ tan§,
Mo= 1z tan 9, (22)
and
_ 1 ~tan§,
" ¥ tan®, (23)
and hence
— mO - 1
tan 9, mo + 1 (24)
and
— 1 - m]
tan 8, I+ m, {25)

or
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1.0
8,
0.8+
06}
A
8
02r
0 L 1 L 1
0 02 0.4 06 08 1.0
X
FiG. 1. Illustrative curve.
= -1 m() s ]
90 tan —"‘—‘mo F1 (26)
and
-1 1 - n,
= —* 2
0, tan T+ m, 27

In the case of the inverse linear function (Eq. 4), m, = a and m, = 1/a,
and hence
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my = 1/m, (28)

Substituting from Eq. (20) into Eq. (16) gives

_1=-m,
Comparing with Eq. (17) leads to
90 = 91

Therefore, the inverse linear function is symmetric around the 45° line.

One can also show that in the case of the Exponential (Eq. 5),
Quadratic (Eq. 7), and Poisson-type (Eq. 8) functions, 8, is always greater
than 6, and hence they possess asymmetries of the first kind. On the
other hand, the logarithmic function (Eq. 6) has an asymmetry of the
second kind where 0, is always less than 6,. In Fig. 2 the Inverse linear
(8, = 8)), the Exponential (8, > 8,), and the Logarithmic (8, < 0,) func-
tions are plotted for y;;, = 0.2 and 0.8.

As can be seen from Fig. 2, the difference between the three functions
at these extreme values of Yy, is significant. As the value of Y}, or X,
approaches 0.5, the difference between them becomes smaller and
smaller, and for values of Z and Zbetween .45 and .55, the three functions
lead to approximately identical results.

Furthermore, one can prove the following:

6, > 06, formem, < 1 (30)

0, <9, formem; > 1 31
and

0, =10, formgn, = 1 (32)

This leads to a convenient asymmetry index 4s which is defined by the
simple equation

As = moym, (33)

Substituting from Eqgs. (12), (13), (14), and (15) into the corresponding
equations for mym, in Table 1 gives

Inverse linear:
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Quadpratic:
mom, = (4Z — 1)(3 — 4Z) 37

mym, was calculated for different fitting functions using the above
equations in the range from Z = 0.2 to Z = 0.8. The calculated values are
given in Table 2 and are plotted in Fig. 3.

For the Inverse linear fit, myn, is equal to 1 regardless of the value of Z.
Values of mym, vs Z for the logarithmic function were calculated from the
corresponding equation in Table 1 by trial and error and are plotted in
Fig. 3. They are not included in Table 2 because the logarithmic fit can
always be accomplished through the exponential fit. If y vs x is fitted best
by a logarithmic function, then x vs y is fitted best by an exponential
function. As can be seen from Fig. 3, for the same value of Z, the
asymmetry mgm; is equal to (mgm,)”" for the exponential function.

If the original function is given in the form of an experimental curve,
then m, and m, are obtained by measuring the slopes of the experimental
curve at X =0 and X =1 after replotting it on dimensionless X-Y
coordinates or by using Eq. (3).

The application of the above equations and methods are illustrated by
the following example.

ILLUSTRATIVE EXAMPLE

The relation between the vapor pressure of benzene and temperature is
given accurately by the Antoine equation:

B
t+ C

InP=4- (38)

where P is the vapor pressure in mmHg and 7 is the temperature in °C.
A B, and C are Antoine constants. For benzene, they have the following
values:

A4 = 15871, B =2771.23, C =219.89

It is required to express the relation between P and ¢ in terms of the five
fitting functions given above in the range 1 = 80°C to 1 = 110°C and to
compare the values given by all fitting functions with the values given by
the original function.
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Solution
The two dimensionless parameters are

Y =
PZ—PI t2_t1

P, is the initial pressure corresponding to initial temperature ¢,, and P, is
the final pressure corresponding to final temperature #,. Substituting in
the Antoine equation gives P, = 757.6 mmHg and P, = 1755.6 mmHg.
Therefore,

_P-1757.6
Y= 998.0 (39)

and

=t—80

X
30

(40)

Atr=80,X=0and Y=0.Atr=110,X=1and Y = 1.

Dividing the temperature span into 10 equal intervals, the pressure
corresponding to each intermediate temperature was calculated using Eq.
(38), and the results are tabulated in Columns 1 and 2 of Table 3. The
corresponding values of X and Y are also tabulated in Columns 3 and 4,
respectively.

From the calculated values in Table 3, the value of Y at X = % is given
by

YI/Z =7 = 04198

Substituting this value in Egs. (16)-(19) and substituting for ¥ and X from
Egs. (39) and (40), respectively, and rearranging:

For the inverse linear fit:

2611.4(t — 80)

P=7576+ 1885 — 7

(41)

For the Exponential fit:

P =757.6 + 1096.5(0.1775¢°%' — 1) (42)
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For the Poisson fit:

P =757.6 + 9.228(t — 80)e" %" (43)
For the Quadratic fit:

P =1226.7 — 3432t + 0.3557¢ (44)

In the case of the logarithmic fit, b is calculated by trial and error from
the relation

In [3(d + 1]

4 =
198 Inb
and we get b = 0.5205.
Substituting in Eq. (6) leads to
P = 7068 — 1526 In (142.5 — 1) (45)

P was calculated using the five equations (41 to 45) for different values of
X between X = 0 and X = 1, and the results are listed in Table 3 together
with the values obtained from the original function. The error E is also
listed in Table 3 where E = P, — P.

As can be seen from the table, the Poisson function gives the best fit in
this case. It leads to the minimum error among the five functions
tested.

The best function could have been determined from the beginning by
calculating myn, for the original function and comparing it with the
asymmetry of the different fitting functions as given by Fig. 3 or Table 2.

To calculate mgn, for the original function, we proceed as follows.
Differentiating Eq. (38) gives

dP _ BP
dt  (t+c¢) (46)
From Egs. (3) and (46), one gets
dY ) ( dY)
=|{— — 47
o (dX o\ dX /ooy “47)

or
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IZ_tl )2 B2P1P2

P,=P,) (0 + )+ o) (48)

m0m1=<

Substituting 1, = 110°C, t, = 80°C, P, = 1755.6 mmHg, P, = 757.6 mmHg,
B =2771.23, and C = 219.89 gives mym, = 0.9430.

Comparing this asymmetry with the asymmetries of the different
functions at Z = 04198 as given in Fig. 3, one finds that the Poisson
function has the nearest asymmetry and therefore gives the best fit. For a
more accurate comparison, the asymmetries of the different functions
were calculated from Egs. (34)~(37) and from the corresponding formula
given in Table 1 in the case of the Logarithmic function. The calculated
values are listed in Table 4 together with the asymmetry deviation |D|
where |D| = |4s), — (4s),| The subscripts f and o refer to fitting and
original functions, respectively.

Defining an average error E,, by the relation E,, = Z|E|/10, where the
figure 10 is the number of equal intervals at which the error E is
measured, the average error was calculated for different fitting functions
from the data tabulated in Table 3. These values are also listed in
Table 4.

The last column in Table 4 lists values of the ratio E,./|D|. The
constancy of this ratio indicates that the average error is proportional to
the difference in asymmetries between the fitting and original function.

Therefore, to choose the best fitting function, it is sufficient to calculate
As for the original function and see where it stands on Fig. 3 and which
curve is nearest to it. The nearest function gives the best fit.

TABLE 4
) mom, Eav
Function at Yy, = 4198 |Dy (mmHg) E,./|ID|
Inverse linear 1 .0570 1.76 309
Exponential 0.9658 0228 0.71 311
Logarithmic 1.0360 .0930 2.82 30.3
Quadratic 0.8971 .0459 1.36 29.6

Poisson 09514 0084 0.28 333
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SPECIAL AND MORE COMPLEX FITTING FUNCTIONS

Functions (4)-(8) may be used to fit relationships that arise in chemical
engineering and particularly in distillation (bubble points and dew
points of ideal mixtures, variation of the relative volatility o with
temperature or composition, etc.). They are one-constant equations
having finite slopes at X = 0 and X = 1.

For a more accurate fit, two constant equations may be utilized. From
the many formulas which can be utilized, the following equation is
probably the simplest and most useful.

_ aX
Y 1+ (a - 1X" (49)
where a and n are constants.
Similar to Egs. (4)~(8), Eq. (44) has finite slopes at X =0 and X = 1.
By differentiation one can show that

my=a (50)
m1=a+n—an (51)

a
mgm, = asymmetryAs = a + n — an (52)

and
la

Y1/2 1+ (a _ 1)(%))1 (53)
Any combination of two of the above four equations may be used to
deduce the values of @ and n. For better accuracy, the combination should
contain Y, The values of Y, m, and/or m, are calculated for the
original function and substituted in the chosen combination. The
combination of Y, and m, leads directly to the values of @ and n. The
other two alternatives (¥;, and m, or Y}, and mgm,) require trial and error
for the determination of ¢ and n. The combination of Y, and myn,
should give the best overall fit of the original function. The other two give
a better fit at one or the other end of the original curve,

Original functions having slopes equal to 0 or c© at one of the two ends
may be fitted by certain equations, the simplest among them being
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Y = aX" (54)

There are also equations to fit curves having slopes equal to 0 and « and
X = 0and X = 1 or vice versa. Curves having slopes equal to 0 and 0 or «©
and o have points of inflection between X = 0 and X = 1. Such curves
also occur in chemical engineering as in the case of breakthrough curves.
They can be fitted by more complex functions such as the normal
distribution integral and the Poisson summation distribution.

Investigating these special and complex functions is important, but
outside the scope of the present paper.

CONCLUSION

The above technique is not meant to replace least-square procedures
abundantly available in modern software. It does not deal with finding
the best fit for scattered experimental data. It is mainly concerned with
representation of simple curves having no maximum or minimum or
inflection points and for which simple or explicit relations are not
available. Curves of this kind are quite abundant in science and
technology. The variation of the relative volatility a of a binary ideal
mixture with temperature or concentration is probably a good example.

In batch distillation calculations utilizing the Rayleigh equation, it has
been common practice to utilize a constant ¢ equal to the average of
initial and final a values or equal to « at the average temperature T,,. A
constant a in Rayleigh’s integration leads to an analytic expression. By
utilizing the present technique, one can show that the variation of a with
mole fraction x of the more volatile component follows quite accurately
the relation

ax

a=qa+-——
0 1+ bx

(55)

which on substitution in the Rayleigh equation leads to integrals which
are still simple and give analytic and more exact answers without the
inconsistency in choosing a,,. The answers may not differ considerably in
the case of binary distillations, but in multicomponent distillations where
the temperature range is large, the errors resulting from a constant a
could be appreciable. Comparing the results obtained from utilizing Eq.
(55) with resulits obtained from utilizing such different average values of a
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as log mean, geometric, and harmonic averages, it is possible to
determine which average leads to the best results. The same equation for
a can also be conveniently utilized in deriving a more accurate recursion
formula for plate-to-plate calculations in the case of continuous fraction-
ation of binary or multicomponent mixtures using a computer or a
programmable calculator.

Received by editor January 29, 1985
Revised November 6, 1985



