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Curve Fitting in Science and Technology 

A. S. SAID and R. S. AL-AMEERI 
DEPARTMENT OF CHEMICAL ENGINEERING 
UNIVERSIIY OF KUWAIT. KUWAIT 

Abstract 

The classical methods of curve fitting using polynomials are not necessarily the 
best methods in science and technology. In most cases other functions (the 
inverse linear, exponential and logarithmic functions) lead to a better tit of the 
original function or data. The best fitting function is the function which has the 
same asymmetry as the original function or data around the 45" line mlth 
reference to normalized coordinate axes. In the present paper this technique of 
curve fitting is applied to five different fitting functions. An extensive numerical 
example is given to illustrate the application of the derived formulas. It can he 
extended to more complex fitting functions. to the derivation of accurate 
interpolation and extrapolation formulas, and to the numerical solution of 
differential and partial differential equations of interest in chemistry, chemical 
engineering, separation science, and other branches of science and technology. 

INTRODUCTION 

In different branches of science and technology there are certain 
relationships which cannot be represented by easy analytic expressions, 
yet, on plotting these relationships, a simple curve is obtained which can 
be approximated quite accurately by a simple function. Examples of such 
relationships are the bubble point th and dew point td of a binary ideal 
liquid mixture and the relation between the relative volatility a of this 
mixture with temperature t or composition x, where x is the mole fraction 
of the more volatile component in the ideal liquid mixture. 

On the other hand, the differential equation representing a certain 
phenomenon might not be of a standard form leading to an analytic 
solution, yet, on integrating it numerically and plotting the results, a 
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66 SAID AND AL-AMEERl 

simple curve is obtained which can be easily approximated by a simple 
mathematical expression. 

The approximating function can be determined from the boundary 
conditions of the problem under consideration, particularly from the 
slopes at the beginning and end which can be easily determined even for 
complicated implicit functions and nonconventional differential equa- 
tions. Another useful parameter is the area under the curve under 
consideration which can usually also be obtained from the boundary 
conditions. From these and other boundary conditions, the approximat- 
ing function is deduced. 

THE Y-X COORDINATES 

For the purpose of generality wc expros:, all functions under considera- 
tion in terms of dimensionless parameter\ Y and X such that Y is the 
vertical dimensionless parameter and X ic the horizontal dimensionless 
parameter. For example, if we de\ire H relation between vapor prcssure P 
and temperature t in the temperature range from t ,  to t , ,  the correspond- 
ing dimensionless parameters tcould he 

where Pz and PI are the pressures at t2 and t l ,  respectively. Similarly, for a 
relation between relative volatility a and temperature, we define the 
dimensionless coordinates as 

Subscript 0 corresponds to x = 0, where x is the mole fraction of the more 
volatile component, and subscript 1 corresponds to x = I ,  therefore 
t o > t > t ,  a n d a , > a > q .  

Similarly, if an  explicit relation for the bubble point of a binary ideal 
liquid mixture is required as a tunction of rnolc fraction, we define Y and 
x by 

t - - t  

to - t ,  
y = A- and X = x 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 67 

to and t ,  are the boiling points corresponding to x = 0 and 1, respccti\ctlj. 
hence to is the boiling point of the less volatile component and t ,  is the 
boiling point of the more volatile component. 

In  general, i fy  = f ( x ) ,  where y is any dependent variable and .Y is any 
independent variable not necessarily composition, and i f  i t  is desired to 
approximate this function in the regionx, toxfwhere i andf'refer to initial 
and final conditions, respectively, and if y1 and v, are the corresponding 
values of the dependent variable, then 

or 

After developing the relation between Y and A', the original parameters 
are substituted to get the relation between Y and t, a and .Y, ctc. 

FITTING FUN CTl ONS 

One can think o fa  large number offunctions where Yvaries from 0 to 1 
as X varies between 0 and 1. Only five important functions will be 
considered in this paper, natiicly, 

I. The inverse linear function 

11. The exponential function 

( 5 )  
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111. The logarithmic function 

y =  ln[X(b - 1 )  + 11 
In b 

IV. The quadratic function 

Y = c X + ( l  - c ) P  

SAID AND AL-AMEERl 

( 6 )  

(7) 

V. The Poisson-type function 

where a, g, b, c, and k are constants. 

function, where 
By differentiation and integration, m,,, m, ,  and I were deduced for each 

and 

Z = area under the Y vs X curve = 6' YdX ( 1 1 )  

Values of I, mb m,,  and m e ,  are given in Table 1 for all five 
functions. 

As will be shown later, m e ,  is a measure of the asymmetry of the 
function around the 45" line. 

It should be noted that each of the above five functions contains one 
constant only and has finite slopes at X = 0 and X = 1. Other functions 
which have slopes equal to zero or infinity at one or both ends or 
functions containing more than one constant will be discussed only 
briefly later on. The emphasis in this paper is on the one-constant 
equations having finite initial and final slopes of which Eqs. (4) to (8) are 
important examples. 

DETERMINATION OF THE CONSTANTS a, g, 6, c, AND k 

These constants can be evaluated from the coordinates Y. X of one 
point only on the curve and particularly from Y,,, or X,,? which leads to 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 69 

TABLE 1 

Function I “0 “1 ”OM1 

a 1 1 - u(u - 1 - lna) Inverse linear 
(I.L.) (a - 1)2 U 

b 1 b - 1  6 - 1  (b - 1)* 
Logarithmic __ 

b - 1  lnb In b b l n b  b(ln b)2 (J.4 

l c  
3 6  

Quadratic (Q) - + -  c 2 - c  c(2 - c )  

Poisson (P) 
k - l n k - l  

(Ink)’ 
k 1 - I n k  k(1 -1nk) 

easier relations for the constants and also to a better fit. Yl/2 is the value of 
Y at X = ?h and XI, is the value ofX at Y = 1/. For convenience we denote 
YIl2 by the symbol Z and XI,, by the symbol 2 The constants may be 
obtained also from mo or m, or even I. Relations between the constants 
and I are rather complex. They are deduced from m, or m l  if the emphasis 
is on the first portion or last portion of the curve, respectively, or if the 
values of Z and 2 are not easy to determine. In general, whenever 
possible, the constants are deduced from 2 or 2 which lie around the 
middle portion of the curve. This will, in general, lead to an overall better 
accuracy over the entire length of the curve. 

The five values obtained from m,, m,, I ,  2, and 2 are identical only if 
the fit between the original and approximating function is perfect, 
otherwise they differ from m e  another. If the difference is significant, 
then the approximating function is not satisfactory. 

The equations relating the different constants to (Y and X), Z, 2 m, 
and m, can be deduced either from explicit functions directly or from 
implicit functions by trial and error. 

In most practical cases, however, Y,,, is known or can be determined 
easily. The constants a, g, c, and k for the inverse linear, exponential, 
quadratic, and Poisson functions can be expressed easily in terms of 
Z 3 Y,/,, leading to 
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70 SAID AND AL-AMEERI 

Z 
1-z  a=- 

c = 4 z - 1  (14) 

and 

k = 4Z2 (15) 

Substituting into Eqs. (4), (9, (7), and (8) gives the relations between Y 
and X in terms of Z as follows. 

Inverse linear: 

zx 
1 - z + X ( 2 Z  - 1) 

Y =  

Exponential: 

Quadratic: 

Y = (42  - l)X + 2(1 - 2 Z ) P  

Poisson: 

Y = X(2Z)2+4 

An explicit relation forb in terms of 2 is not possible. In this case, b is 
calculated by trial and error from Z and its values are substituted in Eq. 
(6) to get the fitting logarithmic function. - An analytic expression is 
possible, however, in terms of = Z. 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 71 

ASYMMETRY OF THE Y vs X FUNCTION 

With reference to Fig. 1, 8, and 8, are the two angles between the 
tangents to the Y-X curve and the 45" line at X = 0 and X = 1, 
respectively. A curve is symmetrical around the 45" line if €lo = 8,. If 
€I1 # 8,, then the curve is asymetric around the diagonal. When el > 8,, 
the curve has an  asymmetry of the first kind, and when 8, < €lo, the curve 
has an asymmetry of the second kind. 

Since this paper is devoted to curves which have no maxima or minima 
or points of inflection between X = 0 and X = 1, then the curves of 
interest will lie totally above the diagonal, in which case both 8, and 8, 
have positive values, or lie totally below the diagonal, in which case both 
€lo and el have negative values. 

8, and 8, are related to m, and m,, respectively, as follows: 

m o  = tan (45 + 8,) 

m ,  = tan(45 - 8,) 
(20) 

(21) 

Solving for m, and m ,  gives 

1 + tan8, 
1 - tang, 

m, = 

and 

1 - tan8, 
m ,  = ~- 1 + tan8, 

and hence 

m, - 1 
m o +  1 

tan8, = 

and 

1 - m ,  tan8, = ~ 

1 + m ,  

or 
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FIG. 1. Illustrative curve. 

mn - 1 
m , +  1 

80 = tan-’ ___ 

1 - m l  el = tan-’ ~ 

1 + m ,  

0.8 1 .o 
X 

In the case of the inverse linear function (Eq. 4), mn = a and m, = l/a, 
and hence 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 

m o =  l l m ,  

Substituting from Eq. (20) into Eq. (16) gives 

1 - m l  tan0, = ~ 

1 + m l  

Comparing with Eq. (1 7) leads to 

Therefore, the inverse linear function is symmetric around the 45" line. 
One can also show that in the case of the Exponential (Eq. 5), 

Quadratic (Eq. 7), and Poisson-type (Eq. 8) functions, 0, is always greater 
than 0,, and hence they possess asymmetries of the first kind. On the 
other hand, the logarithmic function (Eq. 6) has an asymmetry of the 
second kind where 0, is always less than 0,. In Fig. 2 the Inverse linear 
(0, = el), the Exponential (0, > e0), and the Logarithmic (0, < 0,) func- 
tions are plotted fory,,, = 0.2 and 0.8. 

As can be seen from Fig. 2, the difference between the three functions 
at these extreme values of YIl2 is significant. As the value of Y,,, or X,,, 
approaches 0.5, the difference between them becomes smaller and 
smaller, and for values of 2 and zbetween .45 and .55, the three functions 
lead to approximately identical results. 

Furthermore, one can prove the following: 

0, > 0, 

0, < 0, 

formom, < 1 

form,m, > 1 

and 

0, = 0, formom, = 1 (32) 

This leads to a convenient asymmetry index As which is defined by the 
simple equation 

As = moml (33) 

Substituting from Eqs. (12), (13), (14), and (15) into the corresponding 
equations for m e ,  in Table I gives 

Inverse linear: 
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X 

FIG. 2. Plots of inverse linear, exponential, and logarithmic functions, 

Exponential: 

Poisson: 

2 
2Z(1 - Z) In E] 

m f l ,  = [ 1 - 2 2  z 

m e ,  = 4Z2(1 - 2 11122) 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 75 

Quadratic: 

= (42  - 1)(3 - 42)  (37) 

mornl was calculated for different fitting functions using the above 
equations in the range from 2 = 0.2 to Z = 0.8. The calculated values are 
given in Table 2 and are plotted in Fig. 3. 

For the Inverse linear fit, rngz ,  is equal to 1 regardless of the value of 2. 
Values of rn@, vs Z for the logarithmic function were calculated from the 
corresponding equation in Table 1 by trial and error and are plotted in 
Fig. 3. They are not included in Table 2 because the logarithmic fit can 
always be accomplished through the exponential fit. Ify vs x is fitted best 
by a logarithmic function, then x vs y is fitted best by an exponential 
function. As can be seen from Fig. 3, for the same value of Z, the 
asymmetry morn, is equal to (mornl)-' for the exponential function. 

If the original function is given in the form of an experimental curve, 
then rno and rn, are obtained by measuring the slopes of the experimental 
curve at X =  0 and X =  1 after replotting it on dimensionless X-Y 
coordinates or by using Eq. (3). 

The application of the above equations and methods are illustrated by 
the following example. 

ILLUSTRATIVE EXAMPLE 

The relation between the vapor pressure of benzene and temperature is 
given accurately by the Antoine equation: 

B l n P = A - -  
t + C  

where P is the vapor pressure in mmHg and t is the temperature in "C. 
A, B, and C are Antoine constants. For benzene, they have the following 
values: 

A = 15.871, B = 2771.23, C = 219.89 

It is required to express the relation between P and t in terms of the five 
fitting functions given above in the range t = 80°C to t = 110°C and to 
compare the values given by all fitting functions with the values given by 
the original function. 
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0.2 .3  .4 .5 .6 .7 .8 
Y1/2 

FIG. 3.  Plots of r n g l  versus y1/2 for logarithmic, inverse linear, exponential, Poisson, and 
quadratic functions. 
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78 SAID AND AL-AMEERI 

Solution 

The two dimensionless parameters are 

PI is the initial pressure corresponding to initial temperature t,, and P2 is 
the final pressure corresponding to final temperature tz. Substituting in 
the Antoine equation gives P, = 757.6 mmHg and P2 = 1755.6 mmHg. 
Therefore, 

P - 757.6 Y =  
998.0 

and 

t - 80 x=- 
30 

(39) 

At t = 8 0 , X =  0 and Y = 0. At t = l lO,X= 1 and Y = 1. 
Dividing the temperature span into 10 equal intervals, the pressure 

corresponding to each intermediate temperature was calculated using Eq. 
(38), and the results are tabulated in Columns 1 and 2 of Table 3. The 
corresponding values of X and Y are also tabulated in Columns 3 and 4, 
respectively. 

From the calculated values in Table 3 ,  the value of Y at X = '/z is given 
by 

Y1,* = Z = 0.4198 

Substituting this value in Eqs. (16)-( 19) and substituting for Y and X from 
Eqs. (39) and (40), respectively, and rearranging: 

For the inverse linear fit: 

261 1.4(t - 80) 
188.5 - t P = 757.6 + 

For the Exponential fit: 

P = 757.6 + 1096.5(0.1775enn2'h' - I )  
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80 SAID AND AL-AMEERl 

For the Poisson fit: 

P = 757.6 + 9.228(t - 80)en~"""7' (43) 

For the Quadratic fit: 

P = 1226.7 - 34.32t + 0.3557t2 (44) 

In the case of the logarithmic fit, b is calculated by trial and error from 
the relation 

In [+(b + I)]  
In b .4198 = 

and we get b = 0.5205. 
Substituting in Eq. (6) leads to 

P = 7068 - 1526 In (142.5 - t) (45) 

P was calculated using the five equations (41 to 45) for different values of 
X between X = 0 and X = 1 ,  and the results are listed in Table 3 together 
with the values obtained from the original function. The error E is also 
listed in Table 3 where E = Pcalc - P. 

As can be seen from the table, the Poisson function gives the best fit in 
this case. It leads to the minimum error among the five functions 
tested. 

The best function could have been determined from the beginning by 
calculating m e ,  for the original function and comparing it with the 
asymmetry of the different fitting functions as given by Fig. 3 or Table 2. 

To calculate m e l  for the original function, we proceed as follows. 
Differentiating Eq. (38) gives 

d P -  BP 
dt ( t  + c)' 

From Eqs. (3) and (46), one gets 

or 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 81 

Substituting t2 = llO"C, tl = 80°C, Pz = 1755.6 mmHg, PI = 757.6 mmHg, 
B = 2771.23, and C = 219.89 gives m g l  = 0.9430. 

Comparing this asymmetry with the asymmetries of the different 
functions at Z = 0.4198 as given in Fig. 3, one finds that the Poisson 
function has the nearest asymmetry and therefore gives the best fit. For a 
more accurate comparison, the asymmetries of the different functions 
were calculated from Eqs. (34)-(37) and from the corresponding formula 
given in Table 1 in the case of the Logarithmic function. The calculated 
values are listed in Table 4 together with the asymmetry deviation ID1 
where 101 = I(&),- (&),I. The subscripts f and o refer to fitting and 
original functions, respectively. 

Defining an average error Eav by the relation Ea, = ZIEV10, where the 
figure 10 is the number of equal intervals at which the error E is 
measured, the average error was calculated for different fitting functions 
from the data tabulated in Table 3. These values are also listed in 
Table 4. 

The last column in Table 4 lists values of the ratio EJIDI. The 
constancy of this ratio indicates that the average error is proportional to 
the difference in asymmetries between the fitting and original function. 

Therefore, to choose the best fitting function, it is sufficient to calculate 
As for the original function and see where it stands on Fig. 3 and which 
curve is nearest to it. The nearest function gives the best fit. 

TABLE 4 

mdn 1 Eav  
Function at Y1t2 = .4198 14 (mmHg) Eav/Pl 

Inverse linear 1 .0570 1.76 30.9 
Exponential 0.9658 .0228 0.7 1 31.1 
Logarithmic 1.0360 .0930 2.82 30.3 
Quadratic 0.897 1 0459 1.36 29.6 
Poisson 0.95 I4 ,0084 0.28 33.3 
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82 SAID AND AL-AMEERl 

SPECIAL AND MORE COMPLEX FITTING FUNCTIONS 

Functions (4)-(8) may be used to fit relationships that arise in chemical 
engineering and particularly in distillation (bubble points and dew 
points of ideal mixtures, variation of the relative volatility a with 
temperature or composition, etc.). They are one-constant equations 
having finite slopes at X = 0 and X = 1. 

For a more accurate fit, two constant equations may be utilized. From 
the many formulas which can be utilized, the following equation is 
probably the simplest and most useful. 

aX 
1 + ( a  - 1)x" 

Y =  (49) 

where a and n are constants. 
Similar to Eqs. (4)-(8), Eq. (44) has finite slopes at X = 0 and X = 1. 
By differentiation one can show that 

a + n - a n  
a 

m ,  = 

mnml = asymmetryAs = a + n - a n  ( 5 2 )  

and 

;a 
1 + ( a  - I)(+)" YI/* = ( 5 3 )  

Any combination of two of the above four equations may be used to 
deduce the values of a and n .  For better accuracy, the combination should 
contain YI/> The values of Y,/2, m,, and/or m ,  are calculated for the 
original function and substituted in the chosen combination. The 
combination of Y,,, and m, leads directly to the values of a and n .  The 
other two alternatives (Yl/2 and ml or Y,,, and moml) require trial and error 
for the determination of a and n .  The combination of Yl/z and mgn, 
should give the best overall fit of the original function. The other two give 
a better fit at one or the other end of the original curve. 

Original functions having slopes equal to 0 or M) at one of the two ends 
may be fitted by certain equations, the simplest among them being 
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CURVE FITTING IN SCIENCE AND TECHNOLOGY 83 

Y = a X "  (54) 

There are also equations to fit curves having slopes equal to 0 and m and 
X = 0 and X = 1 or vice versa. Curves having slopes equal to 0 and 0 or m 
and m have points of inflection between X = 0 and X = 1. Such curves 
also occur in chemical engineering as in the case of breakthrough curves. 
They can be fitted by more complex functions such as the normal 
distribution integral and the Poisson summation distribution. 

Investigating these special and complex functions is important, but 
outside the scope of the present paper. 

CONCLUSION 

The above technique is not meant to replace least-square procedures 
abundantly available in modern software. It does not deal with finding 
the best fit for scattered experimental data. It is mainly concerned with 
representation of simple curves having no maximum or minimum or 
inflection points and for which simple or explicit relations are not 
available. Curves of this kind are quite abundant in science and 
technology. The variation of the relative volatility a of a binary ideal 
mixture with temperature or concentration is probably a good example. 

In batch distillation calculations utilizing the Rayleigh equation, it has 
been common practice to utilize a constant a equal to the average of 
initial and final a values or equal to a at the average temperature Tav. A 
constant a in Rayleigh's integration leads to an analytic expression. By 
utilizing the present technique, one can show that the variation of a with 
mole fraction x of the more volatile component follows quite accurately 
the relation 

ax a = a , + -  
1 + hx ( 5 5 )  

which on substitution in the Rayleigh equation leads to integrals which 
are still simple and give analytic and more exact answers without the 
inconsistency in choosing aav. The answers may not differ considerably in 
the case of binary distillations, but in multicomponent distillations where 
the temperature range is large, the errors resulting from a constant a 
could be appreciable. Comparing the results obtained from utilizing Eq. 
(55)  with results obtained from utilizing such different average values of a 
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04 SAID AND AL-AMEERI 

as log mean, geometric, and harmonic averages, it is possible to 
determine which average leads to the best results. The same equation for 
a can also be conveniently utilized in deriving a more accurate recursion 
formula for plate-to-plate calculations in the case of continuous fraction- 
ation of binary or multicomponent mixtures using a computer or a 
programmable calculator. 
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